Laser-written Nitrogen Vacancy (NV−) centers are combined with transfer-printed GaN micro-lenses to increase fluorescent light collection by reducing total internal reflection at the planar diamond interface. We find a 2x improvement of fluorescent light collection using a 0.95 NA air objective at room temperature, in agreement with FDTD simulations. The nature of the transfer print micro-lenses leads to better performance with lower Numerical Aperture (NA) collection, as confirmed by results with a 0.5NA air objective which show improvement greater than 5x. The approach is attractive for scalable integrated quantum technologies.
Keywords:
printing
,nitrogen
,lenses
,diamond
,solids
,photoluminescence
,quantum emitters
,gallium nitride
,fabrication
,objectives