The pseudo Ruddlesden-Popper phase Li2CaTa2O7 is converted to ZnCaTa2O7, FeCaTa2O7, or CoCaTa2O7 by reaction with the corresponding transition-metal dichloride. Diffraction data reveal that ZnCaTa2O7 adopts a polar crystal structure (P2cm) with the Zn2+cations ordered into stripes within the interlayer coordination sites, and the TaO6 units adopt an a-b-c+/-(a-b-)c+ tilting pattern. In contrast, FeCaTa2O7 and CoCaTa2O7 adopt polar structures (P21nm) with the transition-metal cations ordered in a checkerboard pattern within the interlayer coordination sites, and the TaO6 units adopt an a-b-c+/ b-a-c+ tilting pattern. The different polar structures adopted are rationalized on the basis of the size of the interlayer transition-metal cation. On cooling, FeCaTa2O7 (TN = 40 K) and CoCaTa2O7 (TN = 25 K) adopt antiferromagnetically ordered states with spins aligned parallel to the crystallographic stacking axis and arranged in a G-type manner. Close inspection of the NPD data collected from FeCaTa2O7 at low temperature reveals a diffuse component to the magnetic scattering, which, in combination with magnetization data, suggest a glassy component to the low-temperature magnetic state. Neither FeCaTa2O7 nor CoCaTa2O7 shows significant lattice parameter anomalies around their respective Néel temperatures, in contrast to the previously reported manganese analogue MnCaTa2O7.
3402 Inorganic Chemistry
,34 Chemical Sciences