Angle-dependent magneto-transport measurements on kappa-(BEDT-TTF)(2)Cu(NCS)(2) under pressure

Bangura AF, Goddard PA, Tozer S, Coldea AI, McDonald RD, Singleton J, Ardavan A, Schleuter J

Magnetotransport measurements have been performed on single crystals Of kappa-(BEDT-TTF)(2)Cu(NCS)(2) in fields of up to 33 T at temperatures between 500 mK and 4.2K. Using a diamond anvil cell mounted on a goniometer, measurements of the angle and temperature dependence of the interlayer resistance, R-zz, under hydrostatic pressures between 1.1 kbar and 17.3 kbar were performed. For the first time we have been able to measure angle-dependent magnetoresistance oscillations under pressure due to both the 1D and 2D Fermi surfaces in addition to Shubnikov de Haas oscillations. The results show that the shape of the elliptical quasi-2D Fermi-pocket is more elongated under a hydrostatic pressure of 9.8 kbar compared with ambient pressure. When the magnetic field B is close to parallel to the highly conductive plane, bc, a peak in R-zz is observed with an angular width determined by the ratio of the maximum inter- and intra-layer Fermi velocities. The width of this peak is found to increase with pressure suggesting that the Fermi surface becomes more three-dimensional upon application of pressure.

Keywords:

MAGNETOTRANSPORT

,

SUPERCONDUCTORS

,

HIGH MAGNETIC-FIELDS

,

organic superconductors